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Abstract

Numerous specification techniques have been proposed to improve the development of

computer software.  The present paper reports results from one experiment to compare the

effectiveness of functional testing given three different sets of software specifications.  Three

groups of experienced programmers independently developed functional test cases for the same

automated cruise control software.  One group worked solely from a natural language description,

 one was given a graphical, real-time, structured analysis (RTSA) specification to augment the

natural-language description, and a third was given, in addition to the English-language

description and the RTSA specification, an executable specification.  Two measures of

performance were evaluated:  1) the degree of statement coverage achieved by the test cases

created by each group and 2) the amount of time taken to create the test cases.  No significant

difference in performance was found among any of the groups for either of the measures.

Individual differences in performance among the subjects were observed.  Additional statistical

tests were used to evaluate the effect of other factors on these individual differences.  Such

differences appear to be attributable to variations among the subjects in effort, ability, motivation,

and understanding of the assignment.  These results suggest that software engineering researchers

should investigate people-related, management issues that, perhaps, provide the most significant,

short-run influence on the performance of software engineers.

1 The author attends George Mason University as a doctoral student while employed by the
National Institute of Standards and Technology.  The work described in this paper was conducted
during a doctoral seminar at George Mason.   
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1.0 Introduction

Numerous specification techniques have been proposed to improve the development of

computer software [Bailin 1989, Diller 1990, Harel et al 1987, Heninger 1980, ISO 1987, ISO

1989, Ward and Mellor 1985-1986].   Such techniques aim to remedy the shortcomings of natural

language, that is, to increase precision and to identify omissions and inconsistencies in

specifications.  Some specification techniques go further by providing an underlying semantic

model that can be executed to explore the operational properties of a proposed software system

[Harel et al 1990, Lee and Sluzier 1991, Zave and Schell 1986].  Occasionally, experiments have

been conducted to evaluate the effectiveness of various specification techniques at improving the

design and implementation of software [Basili et al 1986, Kelly and Murphy 1990]; however, few

experiments have been conducted to evaluate the effect of specification techniques on functional

testing.  As used in this paper, functional (or black-box) testing refers to testing a software system

against a specification of the functions that the software is to perform, rather than testing against

the code ( white-box testing) that implements those functions.  Functional tests are written

without the tester examining the code, while white-box tests are written by the tester with full

knowledge of the code.  The present paper reports results from one experiment to compare the

effectiveness of functional testing given three different sets of software specifications.

In the first case, an English-language description alone provides the information used to

create functional test cases.  In a second case, the English-language description is augmented with

a graphical specification notation known as real-time structured analysis (RTSA) [Ward and

Mellor 1985-1986].  In the third case, the English-language description and the RTSA
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specification are used, along with an executable specification.  The experiment investigates

whether these forms of specification affect the ability of experienced programmers to create

functional tests for a given application.  Two working hypotheses are adopted.  First, the use of

RTSA will improve the test coverage and decrease the time taken to create functional tests over

that which is achieved when only the English-language description is available.  The introduction

of a graphical notation, such as RTSA, should increase the precision of the specification, allowing

test developers to more readily identify the test cases needed to cover software written to meet

the specification.  In addition, obtaining a given coverage should take less time with the RTSA

specification because those using only the natural-language description would need to translate

the natural language into a more precise model of the requirements in order to write effective test

cases.  No generally accepted measure exists for the effectiveness of functional testing.  In this

experiment, statement coverage is used to assess the effectiveness of functional testing.  Although

statement coverage is a measure typically associated with white-box testing, the software used in

this experiment might allow statement coverage to provide a useful measure for the effectiveness

of functional testing because most of the code composing the application software maps directly

from the natural-langauge description.  Eleven of the eighteen modules in the software correspond

directly to paragraphs in the natural-langauge description.  Four of the remaining seven modules

provide control for sequencing application modules, while the final three modules provide

encapsulate data elements taken from the natural-language description.

A second working hypothesis is that the use of an executable specification will improve the

test coverage over that which is achieved with a natural-language description and a RTSA

specification. The marginal improvement gained with the executable specification is expected to
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stem from the capability to dynamically model the problem, a capability that should reduce

misunderstandings in some cases.  In addition, since the executable specification can interpret the

functional test language, the intent of each test case can be verified prior to using the test case

against the actual application software.  Use of an executable specification should increase the

time taken to write tests over the time taken when only a natural-language description and a

RTSA specification are available.  This extra time will be used to dynamically evaluate the

functional tests.

The remainder of the paper describes an experiment intended to test these hypotheses.  The

experiment design is presented, followed by the details of conducting the experiment.  Then, the

results from the experiment are reported.  Finally, conclusions are drawn.  Due to length

limitations, much of the supporting experimental material can only be outlined here.  The complete

set of materials, packaged as an experiment notebook, can be obtained from the author [Mills

1993].   

2.0  Experiment Design

The overall design of the experiment required replicated development of functional tests by

three groups of experienced, professional programmers.  Figure 1 provides a pictorial overview of

the general design.  The experiment subjects were drawn from a population of about 200

experienced programmers working within the Computer Systems Laboratory at the National

Institute of Standards and Technology (NIST).  In Figure 1, this population is represented as a

grid with the black boxes denoting a sample drawn from the population. The author approached

potential subjects with a memorandum [Mills 1993, Tab A] that explained the purpose of the

experiment and solicited volunteers.  The experiment called for three groups of at least five test
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writers.  Each group was initially staffed with eight subjects in order to account for the possibility

that some subjects might drop out of the experiment.  Each subject was asked to respond to a

questionnaire [Mills 1993, Tab B] requesting a name, an electronic mail address, the number of

years of programming and functional testing experience, and the degree of familiarity with

software requirements specifications, RTSA, and executable specifications.  Subjects were

assigned to groups on the basis of their answers to the questionnaire and on the author's

assessment of their abilities.  The author had once supervised or managed nineteen of the

twenty-four subjects and had worked with the remaining five as colleagues.  These relationships

occurred over the past five years.  In these relationships, the author had ample opportunities to

gain an appreciation for the strengths and weaknesses of the subjects.
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After comparable groups were formed, each group was assigned randomly to receive

different sets of specifications for an automated cruise control system (ACCS).  The ACCS

application was excerpted from a real-time application suggested by Gomaa [Gomaa 1993].

Gomaa's application includes both cruise control functions and vehicle monitoring functions.  To

reduce the scope of the application, while retaining an interesting level of complexity, the author

selected the cruise control subsystem from Gomaa's application and then used that subsystem as

the application for the experiment.  

As a first step in describing the ACCS, the author excerpted relevant details from Gomaa's

RTSA specification and revised them to fit the context of the experiment.  A context diagram for

the ACCS is shown in Figure 2.  The application consists of four input devices and a single output

to a throttle positioner.  The ACCS is decomposed into two additional levels of data/control flow

diagrams as shown in Figures 3 and 4.  The control transform, Cruise Control, shown in Figure 4,

is further described with a state transition diagram as rendered in Figure 5.  The ACCS must

process nine events in six different states.  From these diagrams, the ACCS RTSA specification

was completed with a data dictionary and mini-specifications for each of the data transforms.  The

complete RTSA specification for the ACCS is contained in the experiment notebook [Mills 1993,

Tab H].

Once the RTSA specification was completed, a seven-page, natural-language description for

the ACCS was drafted.  This description details the ACCS hardware (including a block diagram of

the system, a description of the cruise control lever, and a specification of all register formats),

presents four typical user scenarios, and delineates the functional requirements of the ACCS (as

derived from the RTSA specification).  The complete English-language description is available in
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Figure 2. Automobile Cruise Control System Context Diagram
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the experiment notebook [Mills 1993, Tab F].

A third specification of the ACCS was developed using the CLIPS expert systems language

(version 6.0) [NASA 1993].  The CLIPS specification encodes the RTSA specification as a set of

executable rules.  The CLIPS source code for the executable specification is included in the

experiment notebook, [Mills 1993, Tab J].  The CLIPS specification also includes rules for

interpreting a functional, test language designed by the author for creating test cases for the

ACCS.  

The ACCS test language consists of two sets of test directives:  1) test management and 2)

automobile control.  The test-management directives include begin, end, and comment.  Begin

and end directives bracket each test case and comments are used to explain the intent of a test.
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The automobile-control directives include: 1) speed, 2) engine, 3) brake, and 4) lever.  Speed is

used to simulate changes in vehicle speed.  Engine and brake are used to simulate actions taken by

the driver to ignite and extinguish the engine, or to depress and release the brake.  Lever allows

simulation of a driver adjusting the cruise control lever.  Some automobile control directives

enable a tester to indicate that a driver takes an action at a particular vehicle speed.  Specifically,

the brake could be depressed, the cruise control lever could be set to the OFF position, or the

cruise control lever could be released from the ACCEL position at specific vehicle speeds.  As will

be explained below, the test language should also have allowed other directives to be triggered at
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specific speeds.  A complete specification of the syntax and semantics of the test language (see the

experiment notebook [Mills 1993, Tab G]) was distributed to each subject.  Also distributed were

four sample test scripts, one corresponding to each of the user scenarios given in the

English-language description.  The test language was used by the subjects to create functional test

scripts for the ACCS.

The author chose to conduct the experiment using working conditions rather than laboratory

conditions.  This meant that the tasks were assigned, the subjects were given duration deadlines,

and the subjects were to track their own hours.  The hours of effort recorded by the subjects

themselves are potentially inaccurate; however, closely monitoring the time spent by each subject

would violate the intent to carry on the experiment under working conditions.  Each subject was

to return test scripts, along with an estimate of the amount of time spent reviewing the ACCS

specification, thinking, and writing test cases, to the author via electronic mail.  Each set of test

scripts was reviewed for correct syntax and then executed against an implementation of the

ACCS.

The ACCS implementation was written by the author in C and executed on a SUN SPARC

2.  The implementation was augmented by a test language driver and a cruise control hardware

simulator, as shown in Figure 6.  Source code for all three components of the system is included

in the experiment notebook [Mills 1993, Tabs L, M, and N].  Tests can be executed interactively

or from disk files, and test outputs can be written to a screen or to a log file.  The solid lines in

Figure 6 represent data exchange and the dashed lines represent function calls.  The Test

Language Interpreter changes the state of the simulated hardware as directed by test cases and

- 9 -



then calls the ACCS implementation.  The ACCS implementation extracts hardware state from the

simulator and executes as

necessary to respond to changes

in hardware state.

The ACCS implementation

consists of  508 lines (without

comments) of code comprising

eighteen modules.  Together,

these modules contain 116 basic

blocks (a basic block is a

sequence of code that, once

entered, executes completely as a

unit).  The software design for the ACCS implementation is shown as a structure chart in Figure

7.  Each rectangle represents a module of the ACCS; included inside the rectangle is the module

name and the number of basic blocks (bbs) contained within the module.  The largest module,

process events (43 bbs), encapsulates the cruise control state transition diagram.  Seven basic

blocks out of the 116 total could not be covered.  This means that the best achievable coverage is

109/116, or 93.97%.  Three of the seven uncoverable basic blocks handle default situations that

could not occur under normal circumstances, for example, if the ACCS reaches an invalid state or,

for a given state, if an invalid event occurs.  The remaining four uncoverable blocks result from

flaws in the test language.  For example, the engine could not be turned off in every state even

though ACCS code was written to handle such an occurrence.  Since the test driver code was
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sequential, any events that required asynchronous occurrence had to be triggered by some future

ACCS state (usually, vehicle speed).  For most asynchronous events, the test language included a

means to specify under what conditions the event should be triggered.  Unfortunately, the author

forgot to include, in the test language, the capability to trigger asynchronously the ENGINE OFF

event.  

When the ACCS is executed without any work to do, 21 basic blocks are covered (this

amounts to 18.1% statement coverage).  When the ACCS is stimulated with the four sample test

cases included with the test-language specification, 103 basic blocks are covered.  Any subject

who simply returned the sample test cases would achieve a statement coverage of 103/116, or
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88.79%.  The fact that each participant received sample test cases that achieved 89% test

coverage tends to bias the experiment against the hypotheses by limiting the room for achieving

improved test coverage to only 5% (assuming that each participant begins with the sample test

cases and then adds to them); however, a review of the test cases received from the participants

revealed that only a few based their work on the sample test cases.  In fact, those participants who

achieved the best test coverage did not base their work on the sample test cases.  This observation

is further corroborated by the fact that several of the participants achieved test coverage measures

below that which would have been achieved simply be returning the sample test cases.   The

author suspects that these flaws, which artificially compress the number of basic blocks available

to differentiate performance among individuals, might decrease the variability of the results, and

thus bias the experiment against the hypotheses.  

The ACCS, as written, outputs significant application events to a log file, but collects no

coverage or execution time statistics.  These data collection requirements were satisfied with

existing Unix programs.  The ACCS was compiled using the AT&T C compiler -a option.  This

option: 1) generates an accs.d file where coverage data can be accumulated and 2) inserts into the

ACCS object code calls to coverage-counting routines.  As the ACCS is executed, coverage data

is collected and then accumulated to the accs.d file at the close of each execution.  A separate

program, tcov, converts the accs.d file into an annotated source listing of the ACCS that includes

coverage statistics.  To satisfy the requirement for execution time recording, each test execution

of the ACCS was run as a child of the Unix command time.  The time command prints the

amount of wall-clock and processor time used by its child.
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3.0  Experiment Conduct 

The experiment was initiated when the author approached 28 potential subjects with a

memorandum explaining the purpose and scope of the experiment, and outlining the work that

would be required of each subject.  Twenty-four of the 28 potential subjects volunteered to

participate and filled in a brief questionnaire.  After analyzing responses to the questionnaire, the

author determined the composition of an idealized group from among the volunteers.  The

subjects were then allocated into three groups, while attempting to approach the ideal in each

group.  Table 1 shows the results from this process.  The traits were allocated to individuals in

such a manner that an ideal grouping could not be achieved.  After assigning subjects to groups,

each group was allocated randomly to one of the three classes called for in the experiment design.

Experiment materials, along with a covering memorandum [Mills 1993, Tab A], were

distributed to each subject.  Subjects in all groups were given the natural-language description for

the ACCS and an appendix specifying the syntax and semantics of the test language.  Subjects in

groups two and three were also given an appendix containing an RTSA specification for the

ACCS (as well as a brief description of RTSA notation).  Subjects in group three received a

diskette containing an executable version of the ACCS specification (as well as an appendix

indicating how to load and operate the executable specification).  No training was given to the

subjects.

Each subject was asked to develop test scripts that will "...thoroughly test the ACCS

software against the functional requirements [Mills 1993, Tab A] ."  A more formal definition of

the task might have been given, for example indicating that the measure of performance in the

experiment was statement coverage. The author chose to give the type of vague guidance that
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most functional testers receive, rather than give the more formal guidance that might be expected

under laboratory conditions.A desired deadline of three weeks hence was set for finishing the task.

Trait Value
Ideal
Group

Group
One      

Group
Two     

Group
Three    

Programming Experience >15 years 2 2 2 2

10-15 years 3 3 2 3

5-10 years 3 3 4 3

Functional Testing Experience >9 years 2 3 1 1
1-9 years 4 3 5 4
None 2 2 2 3

Software Reqts. Specification Experience R/W 5 3 7 4
R/NW 2 4 1 3
NR/NW 1 1 0 1

RTSA Experience R/W 2 2 2 1
R/NW 1 1 0 2
NR/NW 5 5 6 5

Executable Specification Experience U/W 4 4 3 4
U/NW 1 1 1 1
NU/NW 3 3 4 3

Cruise Control Experience Used 7 7 7 7
Used 0-1 1 1 1 1

  

 Those who could not meet the deadline were asked to complete the work as soon as

possible thereafter.  The test scripts were to be submitted to the author using electronic mail.

Three mailing lists, one for each group, were established so that pertinent information, regarding

corrections to or clarifications of the experiment materials, could be readily distributed.  The
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mailing lists were used to broadcast corrections or clarifications to documents.  Inquiries

concerning other issues were not circulated on the mailing lists.

Soon after the materials were distributed, one of the subjects in group two withdrew from

the experiment by declaring that the amount of work involved was more than anticipated.  After

two weeks, another subject, this time in group three, withdrew from the experiment after

indicating a lack of free time for writing scripts to test cruise control software.  As the initial

deadline passed,  only two subjects had submitted test cases, but within another week, thirteen

subjects (seven in group one, four in group two, and two in group three) had returned test cases.

Over the course of the experiment (about eight weeks), 20 of the 24 subjects returned  test

scripts, and four dropped out (two each from groups two and three).

Each subject developed the functional test scripts without knowledge of the ACCS software.

None of the test scripts were run against the ACCS software prior to submission.  (Recall,

though, that the subjects in group three were given an executable specification against which to

run their tests.) 

As test cases were received, they were reviewed and executed against the ACCS

implementation.  The data collected is shown in Tables 2, 3, and 4.

4.0  Experiment Results

Some of the data collected appears rather surprising and warrants investigation.  For

example, since each subject was given four sample test scripts (containing 86 test directives, of

which 33 were comments) that, taken together, achieved coverage of 103 basic blocks (88.79%),a

reasonable expectation was that every subject would at least equal this score by beginning with

the sample tests and adding  tests in  an attempt to achieve increased thoroughness.   Yet, in each 
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Table 2.  Data Collected For Group One
(Natural-language Specification)

Subject
           

Test Statements
total (comments)

Creation Time Execution Time
real (cpu)

Coverage
percent (bbs)

Date Received

1 110 (46) 5 h 0.3 s (0.1s) 90.52 (105) 10/24
2 85,955 (17,229) 4 h 158.8 s (58 s) 87.07 (101) 10/24
3 124 (49) 4 h 0.3 s (0.2 s) 88.79 (103) 10/24
4 38,326 (8,208) 5 h 72.6 s (24.1 s) 87.93 (102) 10/14

5 79 (32) 2.75 h 0.3 s (0.1 s) 77.59 (90) 10/25

6 319 (80) 8 h 0.5 s (0.2 s) 89.66 (104) 10/24

7 197 (47) 5 h 0.3 s (0.2 s) 89.66 (104) 10/22
8 145 (22) 5 h 0.3 s (0.1 s) 89.66 (104) 10/24

 group, some subjects failed to cover at least 103 basic blocks.  An examination of each of these

cases is enlightening.

In group one (natural-language description only),  three subjects (2, 4, and 5) failed to cover

at least 103 basic blocks.  Subjects 2 and 4 used programs to automatically generate test cases.

One of the subjects even submitted the generator along with the test cases.  This approach proved

relatively ineffective.  A massive number of test statements were generated in both cases, and a

substantial amount of time was consumed executing the tests, yet only 101 and 102 basic blocks

were covered.  In addition, no time savings were realized over those who generated test cases by

hand.  Subject 5 represents a different case.  Here, only 2 and 3/4 hours were spent reviewing the

material and creating test cases.  Only 47 test directives (after removing comments) were created.

These facts, together with the lateness of the submission, suggest that the subject was just trying

to fulfill a commitment with the minimum possible effort.  The results, 90 basic blocks covered,

support this conclusion.
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Table 3.  Data Collected For Group Two
(Natural-language and RTSA Specifications)

Subject
           

Test Statements
total (comments)

Creation Time Execution Time
real (cpu)

Coverage
percent (bbs)

Date Received

1   WITHDREW ------------------ --------------------- ------------------ 10/2
2 200 (0) 6.5 h 0.5 s (0.1 s) 87.93 (102) 11/2
3  WITHDREW ----------------- --------------------- ----------------- 11/23
4 130 (51) 3 h 0.4 s (0.1 s) 88.79 (103) 10/24

5 170 (49) 11 h 0.4 s (0.2 s) 91.38 (106) 10/14
6  WITHDREW ------------------ --------------------- ------------------ 11/12

7 384 (110) 25.5 h 0.8 s (0.4 s) 87.07 (101) 10/20
8 136 (65) 8 h 0.3 s (0.1 s) 88.79 (103) 10/24

In group two, subjects 2 and 7 failed to cover at least 103 basic blocks.  Over the course of

the experiment, subject 2  provided several excuses to explain why the promised test scripts were

late.  This pattern of behavior suggests that the subject was not motivated to perform the task.  In

the case of subject 7, significant effort was expended (25 and 1/2 hours), and yet, only 101 basic

blocks were covered.  In fact, the test cases were submitted at the tail end of a formal document

that: 1) outlined the test plan, 2) presented a schedule for completion (which called for 26.5

hours), 3) raised a number of testing issues, and 4) provided a traceability graph between the state

transition diagram and the test cases.  After reading the document submitted with the test cases,

the author concluded that the subject spent a great deal of time analyzing the cruise control

application for ways to improve its utility (clearly outside the scope of the assignment).  Judging

from the time spent, the document produced, and the coverage achieved, this subject invested a

great deal of effort in form at the cost of some substance.
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Table 4.  Data Collected For Group Three
(Natural-language, RTSA, and Executable Specifications)

Subject
           

Test Statements
total (comments)

Creation Time Execution Time
real (cpu)

Coverage
percent (bbs)

Date Received

1 177 (91) 6 h 0.3 s (0.1 s) 92.24 (107) 10/22
2   WITHDREW ------------------ --------------------- ------------------ 10/15
3   WITHDREW ----------------- --------------------- ----------------- 11/23
4 502 (192) 20.5 h 0.6 s (0.2 s) 93.10 (108) 10/29

5 205 (74) 3.5 h 0.3 s (0.1 s) 83.62 (97) 11/5
6 103 (28) 4 h 0.4 s (0.l s) 90.52 (105) 11/2
7 178 (59) 11 h 0.3 s (0.1 s) 84.48 (98) 10/24
8 144 (48) 4.5 h 0.3 s (0.0 s) 83.62 (97) 10/26

In group three, subjects 5, 7 and 8 failed to cover even 100 basic blocks.  After discussions

with subject 5, the author concluded that the subject had insufficient time to dedicate to the task,

but still wished to fulfill the commitment.  This led the subject to devote a fixed amount of time to

the task, rather than to aim for thoroughness. Further investigation into the case of subject 7

revealed that many of the test cases created were aimed at testing the test language interpreter,

not the cruise control software.  Apparently, subject 7 misunderstood the assignment.  In the case

of subject 8, many of the test cases probed around the boundary conditions of vehicle speed.  It

appears that this subject invested too much time at speed boundaries, sacrificing many cases in the

state transition diagram.

Using the test scripts received, some commonly computed statistics were calculated for each

group and are displayed in Table 5.  Two statistics were used to search for significant differences

in performance among the groups.  A T-statistic, computed for a non-parametric, rank-sum test,
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[Spurr and Bonini 1973, pp.  320-324] provided the primary means to identify substantial

variation among the groups.  To verify these results, for each measure, a standard error test

[Spurr and Bonini 1973, pp.  268-273] was used on the difference between the means for each

group.   Table 6 displays the computed statistics.

Table 5.  Some Statistics Regarding The Groups

Coverage Creation Time Real Execution Time

Group Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

1 101.63 bbs 4.87 bbs 4.84 h 2.56 h 29.13 s1 58.16 s 
2 103.00 bbs 1.87 bbs 10.80 h 8.71 h 0.48 s 0.19 s 
3 102.00 bbs 5.22 bbs 8.25 h 6.59 h 0.37 s 0.12 s 

1 This high mean resulted from the two subjects who generated automatically a large
number of test cases.  These test cases took minutes of CPU time to execute.  The time taken by
most of the test cases was insignificant and, so, execution time is eliminated from further
consideration.

Test Coverage Null Hypothesis:   No significant difference in test coverage was achieved by

any group.  The statistical tests on the collected data support the null hypothesis.  To identify a

significant difference at the 95% confidence level in test coverage between groups 1 and 2 the

T-statistic must exceed 70 (74 at the 99% confidence level) or fall below 42 (38 at the 99%

confidence level).  The corresponding ranges for groups 1 and 3 are 76-44 (80-40 at the 99%

confidence level), and for groups 2 and 3 are 42-18 (44-16 at the 99% confidence level). The

computed T-statistics fall within the acceptable range.  The T-statistics are corroborated by the

estimation of standard error in the difference between the mean test coverage of each group.  To

be significant, at the 95% confidence level, the standard error values must exceed 1.96.
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Table 6.  Statistics To Test Hypotheses

Test Coverage Creation Time
T-statistic Standard Error T-statistic Standard Error

Group 1 vs. Group 2 55 0.72 42 1.49
Group 1 vs. Group 3 62.5 0.14 55 1.2

Group 2 vs. Group 3 29 0.44 33.5 0.54

 Test Creation Time Null Hypothesis:  No significant difference in test creation time exists

between any of the groups.  The statistical tests on the collected data support the null hypothesis.

To the degree that variability is seen in test creation times, the evidence suggests that subjects

using the natural-language description alone took less time to generate tests than did subjects in

the other two groups.

4.1  Other Possible Explanations  

Since both hypotheses were rejected by the experimental evidence, the author considered

other possible explanations.  An earlier experiment by Curtis, et al., found that for three types of

programming tasks (comprehension, modification, and debugging) a link existed between the

number of programming languages known by a subject and performance [Curtis et al 1989].  To

investigate whether programming language familiarity might explain the differences in individual

performance among subjects in the current study, the author queried those subjects who

completed the experiment to determine how many programming languages each subject knew well

enough to create working programs.  This new information, along with some other data already

collected, was used to reassess the test coverage achieved by each subject.  Table 7 contains the
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data used for the reassessment;  the factors considered include:  1) number of programming

languages each subject can use effectively, 2) the amount of time each subject spent creating the

tests, 3) the number of years of programming experience for each subject, and 4) the number of

years of functional testing experience for each subject.  For each of these traits, subjects were

formed into two groups and rank-sum tests were used to evaluate the test coverage achieved by

each group.  The resulting T-statistics are shown in Table 8.

Programming Languages.  The subjects shown in Table 7 were divided into two groups:  1)

those who knew four or fewer programming languages and 2) those who knew more that four

programming languages.  A rank-sum T-statistic, yielding 99, was then computed for the first

group.  This result showed no significant difference in test coverage between the two groups.  (To

be significant within the 95% confidence interval, the T-statistic must fall outside of the range

72-118;  for the 99% confidence interval the T-statistic must fall outside 66-124.)

Programming Experience.  The subjects in Table 7 were also divided into two groups

depending on the number of years of programming experience.  Twelve subjects had ten or more

years of programming experience and seven had less than ten years.  The computed T-statistic

was again 99, showing no significant difference in test coverage based on subject experience.

Functional Testing Experience.  The subjects were then examined based on the number of

years of functional testing experience:  Eight subjects had no experience and 11 subjects had at

least some experience.  The computed T-statistic, 71, indicated with a 95% confidence (range of

72-118) that those subjects without previous functional testing experience achieved somewhat

better test coverage than those subjects with some functional testing experience.  At the 99%

confidence  level (range of  66-124), no  difference in  performance was  found.  The difference in
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Table 7.  Data Used To Reassess Test Coverage Performance Among Subjects

Group-Subject
Programming
Languages

Programming
Experience

Functional Test
Experience

Creation
Time (h)

Test
Coverage (bbs)

1-1 6 14 0 5 105
1-2 4 13 1 4 101
1-3 6 8 0 4 103
1-4 6 22 10 5 102

1-5 2 7 4 2.75 90
1-6 3 6 3 8 104

1-7 4 13 13 5 104
1-8 3 24 10 5 104
2-2 6 12 3 6.5 102
2-4 3 8 0 3 103
2-5 3 20 3 11 106
2-7 11 17 5 25.5 101
2-8 4 9 0 8 103
3-1 1 10 2 6 107
3-4 8 15 0 20.5 108
3-5 7 7 3 3.5 97
3-6 4 20 10 4 105
3-7 4 25 0 11 98
3-8 8 9 0 4.5 97

Table 8.  T-statistics For Various Subject Groupings

Programming
Languages (Number)
<= 4 vs. > 4               

Programming 
Experience (Years)
>= 10 vs. < 10            

Functional Testing
Experience (Years)
0 vs. > 0                      

Creation
Time (h)
<= 5 vs. > 5              

99 99 71 123
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performance in these two groups was not so great that any strong conclusion can be drawn.

Perhaps the subjects without functional testing performance were more careful when creating their

tests.

Creation Time.  The 11 subjects who spent five hours or less on the task were compared

against the eight subjects who spent more than five hours.  The resulting T-statistic, 123, was

significant at the 95% confidence level (range of 72-118) and almost significant at the 99%

confidence level (range of 66-124).  This result suggests that those subjects who spent more time

creating the tests also achieved the best coverage.  This result, though expected, is not very

strong.

Since the evidence collected shows no significant difference in performance among the

groups in either test coverage achieved or in test creation time,  the individual differences among

the subjects must be attributed to factors other than the set of specifications provided to the tester,

the number of programming languages known, or the number of years of programming and

functional testing experience.  Several factors appear to account for such individual differences in

performance; these factors include:  amount of time spent on the task, differences in ability,

differences in motivation, and variations in the degree of understanding of the assignment.    

5.0   Conclusions

The experiment reported in this paper found that augmenting natural-language descriptions

with graphical and executable specifications made no significant improvement in the test coverage

achieved by subjects writing functional test cases.  Differences in performance were observed

among individual subjects.  The observed differences were shown not to result from differences in

programming experience among the subjects.  Some statistical evidence suggested that those

subjects without previous functional testing experience performed better than those subjects who
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had previous functional testing experience.  Statistical evidence also suggested that those subjects

who spent more time on the task achieved better performance.  Some non-statistical evidence

hints that subjects who achieved better performance might possess a better understanding of the

task or might be more highly motivated to do well on the assignment.  Of course, differences in

ability among the subjects might also account for the observed differences in performance.

Two flaws in the experiment design, taken together, tended to bias the statistical results

against the hypotheses.  The test language provided to the participants could be used to achieve a

maximum of 94% statement coverage for the system being tested.  In addition, the participants

were provided with sample tests that achieved 89% statement coverage.  These facts limited the

possibility of improvement (assuming each participant began with the sample tests) to five

percent.  For reasons explained in the body of the paper, these flaws did not appear to affect the

outcome;  however, since the hypotheses were not supported by the statistical results, the

experiment should be rerun, after removing the flaws, to verify the results.

Some non-statistical evidence from this experiment suggests that improved functional testing

performance might be achieved through attention to management issues:  1)  ensure that the task

is well-understood, 2)  foster motivation among workers, 3)  allow enough time for the task, and

4)  assign able workers to the job.  Statistical experiments should be designed to investigate these

possibilities.  One can envision an experiment where functional testing tasks are assigned to

groups of subjects who have been given varying degrees of instruction regarding the tasks.

Another experiment might provide different rewards to groups of subjects who achieve

pre-established performance goals.  A third experiment might assign functional testing tasks to

groups that are each given different amounts of time to complete the task.  A fourth experiment
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might prescreen subjects using some ability test, group the subjects by their performance on that

test, and then assess the performance of the grouped subjects given the same functional testing

task.

More philosophically, this experiment provides a reminder that software engineering is a

business performed by people, for people.  New tools and techniques can improve our ability to

perform the work of software engineering, but variations in performance can still be expected

because the tools and techniques are used by individuals who differ in ability, who vary in their

understanding of the job, and who respond differently to different situations.  Software

engineering researchers should not forget to investigate the people-related, management issues

that, perhaps, provide the most significant, short-run influences on the performance of software

engineers.
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